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Abstract
We give a simple spectral condition in terms of the ordered eigenvalues of the
state of a bipartite quantum system which is sufficient for separability.

PACS numbers: 03.65.Ud, 03.67.−a

We consider quantum systems where the underlying Hilbert space H is the tensor product of
two finite-dimensional Hilbert spaces. A state of such a system is identified with a density
operator and is said to be separable if it can be written as a convex sum of pure product states
of the system, that is to say, vector states where the vectors are product vectors. The separable
states form a convex subset of the states of the system.

For the simplest bipartite composite system, we have the following result.

Theorem 1. If the eigenvalues λ1 � λ2 � λ3 � λ4 of the two-qubit state ρ satisfy 3λ1 +√
2λ2 + (3 − √

2)λ3 � 2, then ρ is separable.

The states satisfying the inequality have spectra in the simplex spanned by
the spectra (always written taking into account multiplicities and nonincreasingly)
(1/2, 1/6, 1/6, 1/6), ((2 +

√
2)/8, (2 +

√
2)/8, (2 − √

2)/8, (2 − √
2)/8), (1/3, 1/3, 1/3, 0)

and (1/4, 1/4, 1/4, 1/4).
The method used to prove the above result also gives a different proof of the following

result given in ([1], theorem 3).

Theorem 2. If the eigenvalues λ1 � λ2 � · · · � λd of the state ρ of a bipartite quantum
system of dimension d satisfy 3λd + (d − 1)λd−1 � 1, then ρ is separable.

Both results provide simple spectral criteria ensuring separability. In the case of two
qubits (d = 4), theorem 2 is much weaker than theorem 1.

Before proceeding to the proofs, we compare theorem 1 with other available results of
the same nature, that is, conditions on the spectrum implying separability of the state. Given
a state ρ of a d-dimensional bipartite quantum system, we let spec(ρ) = (ρ1, ρ2, . . . , ρd)
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denote the vector of repeated eigenvalues of ρ enumerated so that ρ1 � ρ2 � · · · � ρd . In the
two-qubit case, let � = {(λ1, λ2, λ3, λ4) : λ1 � λ2 � λ3 � λ4 � 0, λ1 + λ2 + λ3 + λ4 = 1}
be all possible state spectra. Theorem 1 asserts that if spec(ρ) lies in A := {λ ∈ � :
3λ1 +

√
2λ2 + (3 − √

2)λ3 � 2}, then ρ is separable. One of the first and most useful
results of this nature is that of [2]: if tr(ρ2) � 1/3, then ρ is separable. In terms of
spectra, this is as follows: spec(ρ) ∈ B := {

λ ∈ � : λ2
1 + λ2

2 + λ2
3 + λ2

4 � 1/3
}

implies
ρ is separable. Although A ∩ B is quite large, A �= B, and the conditions defining
A and B capture different (convex) sets of separable states. To see this, observe that
λ ≡ ((2+

√
2)/8, (2+

√
2)/8, (2−√

2)/8, (2−√
2)/8) ∈ A but λ2

1 +λ2
2 +λ2

3 +λ2
4 = 3/8 > 1/3.

Moreover, (
√

2/3)(3/4, 1/4, 0, 0) + (1 − (
√

2/3))(1/4, 1/4, 1/4, 1/4) lies in B but not in A.
The determination of ‘maximally entangled’ states of two qubits by Verstraete, Audenaert and
De Moor [3] has the following as a consequence1: let C := {λ ∈ � : λ1 − λ3 − 2

√
λ2λ4 � 0};

then ρ is separable if spec(ρ) ∈ C. The inequality
√

(ta + (1 − t)b)(tc + (1 − t)d) �
t
√

ac + (1 − t)
√

bd valid for 0 � t � 1 and a, b, c, d � 0 shows immediately that C is
convex. By the results of [3], one has B ⊂ C.2 One verifies that the four vertices of A given
after the statement of theorem 1 lie in C so that A ⊂ C because A is the convex hull of its four
vertices.

The proof of the two stated results uses certain tools developed in [1] which we briefly
present. Consider the maximally mixed state τ = 1/ dim(H), then τ factorizes over the two
factors of H so that τ is a separable state. Consider the segment with endpoints ρ and τ :
ρt = t · ρ + (1 − t) · τ, 0 � t � 1. The modulus of separability � [1] measures how far you
can go towards ρ beginning at τ until you lose separability: �(ρ) = sup{t : ρt is separable}.
The quantity (1/�) − 1 was studied by Vidal and Tarrach [4] as the ‘random robustness of
entanglement’. It can be shown [4, 1] that the supremum is a maximum, ρt is separable iff
t � �(ρ), �(ρ) > 0 and 1/� is a convex map on the states: for states ρ, φ and 0 � s � 1,

�(s · ρ + (1 − s) · φ) �
(

s

�(ρ)
+

1 − s

�(φ)

)−1

. (1)

The other ingredient is the so-called gap representation of a state introduced in [1]. Let
spec(ρ) = (λ1, λ2, . . . , λd) and ρ = ∑d

j=1 λj · ρj be a spectral decomposition of ρ where ρj

are pairwise orthogonal pure vector states. Define µj = j (λj − λj+1), j = 1, 2, . . . , d − 1,
and ρ̂j = j−1 ∑j

m=1 ρm, j = 1, 2, . . . , d . Note that
∑d−1

j=1 µj = 1 − dλd, ρ̂d = τ and

spec(̂ρj ) = (1/j, 1/j, . . . , 1/j︸ ︷︷ ︸
j

, 0, . . . , 0) ≡ e(j).

So ρ̂1 is pure. Then a gap representation of ρ is ρ = ∑d−1
j=1 µj · ρ̂j + dλd · τ . Noting that

λd = 1/d iff ρ = τ , we assume that this is not the case and write

ρ = (1 − dλd) · ω + dλd · τ, ω =
d−1∑
j=1

µj

1 − dλd

· ρ̂j .

By the results mentioned, ρ is separable iff

(1 − dλd) � �(ω). (2)
1 We thank H Vogts and K Życzkowski for bringing [3] to our attention.
2 A direct proof goes as follows. It suffices to show that if λ ∈ B with λ2

1 + λ2
2 + λ2

3 + λ2
4 = 1/3 then λ ∈ C. Now

putting λ4 = 1 − λ1 − λ2 − λ3 in the previous identity, we obtain

λ2
1 + λ2

2 + λ2
3 − (λ1 + λ2 + λ3) + (λ1λ2 + λ1λ3 + λ2λ3) = −1/3.

Then, (λ1 − λ3)
2 − 4λ2λ4 = λ2

1 + λ2
3 − 6λ1λ3 − 4λ2 + 4λ2

2 + 4(λ1λ2 + λ1λ3 + λ2λ3). Using the displayed identity to
eliminate the summand 4(λ1λ2 + λ1λ3 + λ2λ3), we obtain (λ1 − λ3)

2 − 4λ2λ4 = −3(λ1 + λ3 − 2/3)2 � 0, and this
proves that λ ∈ C.
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Applying (1) to the state ω in its gap representation, we have

�(ω) �

d−1∑
j=1

µj

(1 − dλd)�(̂ρj )

−1

= (1 − dλd)

d−1∑
j=1

µj

�(̂ρj )

−1

,

thus (2) is satisfied (and thus ρ is separable) if
∑d−1

j=1 µj/�(̂ρj ) � 1. We can replace �(̂ρj ) by
lower bounds.

Proposition 1. If �(̂ρj ) � pj � 0 for j = 1, 2, . . . , d − 1 and
∑d−1

j=1 µj/pj � 1, then ρ is
separable.

The prime reason for introducing the gap representation is that not only the last summand
τ but also the second last ρ̂d−1 are separable. This follows from a result of Gurvits and Barnum
[5]: if tr(φ2) � 1/(d −1) for a bipartite composite system of dimension d, then φ is separable.
Now indeed tr(̂ρ2

d−1) = 1/(d − 1).
The least possible modulus of separability has been computed by Vidal and Tarrach [4]:

inf{�(φ) : φ a state} = 2/(2 + d); the infimum is assumed at a pure state. To prove theorem 2,
put p1 = p2 = · · · = pd−2 = 2/(2 + d) and pd−1 = 1 in the proposition.

Turning to theorem 1, consider the numbers �̂j := inf{�(φ) : spec(φ) = e(j)}, which give
the minimal moduli of separability for the states spanning all possible gap representations.
Replacing pj by l̂j in the proposition gives us a general inequality providing a sufficient
condition for separability. No general information is available for l̂j except the calculation of
[6] for two qubits where l̂1 = 1/3, l̂2 = 1/

√
2 and l̂3 = 1. From this and the proposition, one

gets theorem 1. Since l̂1 = 1/3 and l̂3 = 1 follow from the results quoted above, we only give
the calculation of l̂2 in the appendix.

Appendix. Calculation of � for a two-qubit state with spec = (1/2, 1/2, 0, 0)

Reference [6] gives a direct calculation of �̂1, �̂2 and �̂3 using the Wootters criterion [7].
Recall that if ρ is a state of a two-qubit system, the Wootters operator W associated with it is
W = (

√
ρ(σy ⊗ σy)ρ(σy ⊗ σy)

√
ρ)1/2. Here all operators are taken as matrices with respect

to a product orthonormal basis

σy =
(

0 −i
i 0

)
and ρ is the complex conjugate of ρ taken with respect to the basis which is real. The
Wootters criterion is as follows: ρ is separable if and only if the (repeated) eigenvalues
w1 � w2 � w3 � w4 of W satisfy w1 � w2 + w3 + w4.

We will calculate the modulus of separability for any state ρ for which spec(ρ) =
(1/2, 1/2, 0, 0) by calculating the spectrum of the Wootters operator associated with ρt =
tρ + (1 − t)τ, 0 � t � 1. The spectrum of ρt consists of two double eigenvalues α = (1 + t)/4
and β = (1 − t)/4 (which coincide for t = 0 where ρ0 = τ ). In order not to overload the
notation, we consider a density operator A with spec(A) = (α, α, β, β) where α + β = 1/2
and α � β � 0; thus 1/4 � α � 1/2. The spectral decomposition of A reads A = αP +βP ⊥,
where P is an orthoprojection of rank 2 and P ⊥ = 1 − P is its orthocomplement, another
orthoprojection of rank 2. It follows that (σy ⊗ σy)A(σy ⊗ σy) = αQ + βQ⊥, where
Q = (σy ⊗ σy)P (σy ⊗ σy) is an orthoprojection of rank 2 and Q⊥ = 1 − Q. Using
this one obtains for the square of the Wootters operator associated with A the formula
W 2 = β21+β(α−β)(P +Q)+(α−β)(

√
αβ−β)(PQ+QP)+(α2−β2−2

√
αβ(α−β))PQP .
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Now since P,P ⊥,Q and Q⊥ are orthoprojections of rank 2 in a four-dimensional
Hilbert space, we have three mutually exclusive alternatives for the subspaces U and V

spanned by P and Q, respectively: (1) U ∩ V = {0} which happens when and
only when Q = 1−P which is equivalent to tr(PQ) = 0; (2) dim(U ∩V ) = 2 which happens
when and only when Q = P which is equivalent to tr(PQ) = 2; (3) dim(U ∩ V ) = 1 which
happens when and only when there are unit vectors ψ , φ and χ in the four-dimensional Hilbert
space which satisfy 〈ψ, φ〉 = 〈ψ, χ〉 = 0 and |〈χ, φ〉| < 1 such that P = |ψ〉〈ψ | + |φ〉〈φ|
and Q = |ψ〉〈ψ | + |χ〉〈χ |. One has tr(PQ) = 1 + |〈χ, φ〉|2. This alternative is equivalent to
tr(PQ) ∈ [1, 2).

The three alternatives are distinguished by the value of tr(PQ). For convenience, we
introduce the following characteristic geometric parameter ξ = tr(PQ) − 1, which will
determine the modulus of separability completely. We now distinguish the three possibilities:

(1) which occurs iff ξ = −1. Here PQ = 0 allows one to compute W 2 = αβ1. The Wootters
criterion is satisfied and the associated state is separable;

(2) which occurs iff ξ = 1. Here P = Q allows one to calculate directly W = A, and the
Wootters criterion is just α � 1/2, so the associated state is separable;

(3) which occurs iff 0 � ξ < 1. We may assume that

ψ =


1
0
0
0

 , φ =


0
1
0
0

 , χ =


0√
ξ

η1

η2

 , η =
(

η1

η2

)
,

where η �= 0 because ‖η‖2 = ‖χ‖2 −ξ = 1−ξ > 0. We now partition C
4 = C⊕C⊕C

2,
and doing the necessary matrix multiplications we get, from our previous formula for W 2,

W 2 =

α2 0 〈0|
0 αβ + α(α − β)ξ (α − β)

√
ξαβ〈η|

|0〉 (α − β)
√

ξαβ|η〉 β212 + β(α − β)|η〉〈η|

 .

It is now clear that α2 is an eigenvalue of W 2. The eigenvalue condition for an eigenvalue ζ

to the eigenvector x ⊕ µ for the lower right 3 × 3 block on C ⊕ C
2 is

(ζ − αβ − α(α − β)ξ)x = (α − β)
√

ξαβ〈η,µ〉, (A.1)

(ζ − β2)µ = (α − β)(
√

ξαβx + β〈η,µ〉)η. (A.2)

Putting x = 0 and taking as we may µ �= 0 orthogonal to η, (A.1) is satisfied and (A.2)
reduces to (ζ − β2)µ = 0; thus β2 is an eigenvalue of W 2. We are now left with the
problem of finding eigenvectors orthogonal to those already found. They are of the form
x ⊕ cη with x, c ∈ C. Inserting such eigenvectors into (A.1) and (A.2), the discussion of the
solutions is tedious but straightforward. One obtains the two missing eigenvalues of W 2 to be
ζ±(α, ξ) = α

2 (1 − 2α) + ξ

8 (4α − 1)2 ± 4α−1
4

√
2ξα(1 − 2α) + ξ 2(2α − 1/2)2. Having the four

eigenvalues of A, we must decide which is the largest. We have α � β by assumption, and
clearly ζ+(α, ξ) � ζ−(α, ξ). Moreover, ξ → ζ+(α, ξ) is increasing and ζ+(α, 1) = α2. Thus, α
is the largest eigenvalue of W and the Wootters criterion reads α � β +

√
ζ+(α, ξ)+

√
ζ−(α, ξ).

Manipulation of this inequality shows that it is equivalent to α � (1 + (1/
√

2 − ξ))/4.
Recalling that α = (1 + t)/4, we arrive at the following: if the two-qubit state ρ has

spec(ρ) = (1/2, 1/2, 0, 0), then

�(ρ) =
{

1, if Q = 1 − P ,
1√

3−tr(PQ)
, otherwise,
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where P is the spectral orthoprojection to the eigenvalue 1/2 and Q = (σy ⊗ σy)P (σy ⊗ σy).
Since tr(PQ) ∈ [1, 2] when Q �= 1 − P , we obtain �̂2 = inf{�(ρ) : spec(ρ) = (1/2,

1/2, 0, 0)} = 1/
√

2.
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