A simple spectral condition implying separability for states of bipartite quantum systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys. A: Math. Gen. 399291
(http://iopscience.iop.org/0305-4470/39/29/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 03/06/2010 at 04:42

Please note that terms and conditions apply.

A simple spectral condition implying separability for states of bipartite quantum systems

M E Gabach Clément and G A Raggio
FaMAF, Universidad Nacional de Córdoba, X5000 Córdoba, Argentina
E-mail: raggio@famaf.unc.edu.ar

Received 17 April 2006
Published 5 July 2006
Online at stacks.iop.org/JPhysA/39/9291

Abstract

We give a simple spectral condition in terms of the ordered eigenvalues of the state of a bipartite quantum system which is sufficient for separability.

PACS numbers: 03.65.Ud, 03.67.-a

We consider quantum systems where the underlying Hilbert space \mathcal{H} is the tensor product of two finite-dimensional Hilbert spaces. A state of such a system is identified with a density operator and is said to be separable if it can be written as a convex sum of pure product states of the system, that is to say, vector states where the vectors are product vectors. The separable states form a convex subset of the states of the system.

For the simplest bipartite composite system, we have the following result.
Theorem 1. If the eigenvalues $\lambda_{1} \geqslant \lambda_{2} \geqslant \lambda_{3} \geqslant \lambda_{4}$ of the two-qubit state ρ satisfy $3 \lambda_{1}+$ $\sqrt{2} \lambda_{2}+(3-\sqrt{2}) \lambda_{3} \leqslant 2$, then ρ is separable.

The states satisfying the inequality have spectra in the simplex spanned by the spectra (always written taking into account multiplicities and nonincreasingly) $(1 / 2,1 / 6,1 / 6,1 / 6),((2+\sqrt{2}) / 8,(2+\sqrt{2}) / 8,(2-\sqrt{2}) / 8,(2-\sqrt{2}) / 8),(1 / 3,1 / 3,1 / 3,0)$ and $(1 / 4,1 / 4,1 / 4,1 / 4)$.

The method used to prove the above result also gives a different proof of the following result given in ([1], theorem 3).

Theorem 2. If the eigenvalues $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{d}$ of the state ρ of a bipartite quantum system of dimension d satisfy $3 \lambda_{d}+(d-1) \lambda_{d-1} \geqslant 1$, then ρ is separable.

Both results provide simple spectral criteria ensuring separability. In the case of two qubits ($d=4$), theorem 2 is much weaker than theorem 1.

Before proceeding to the proofs, we compare theorem 1 with other available results of the same nature, that is, conditions on the spectrum implying separability of the state. Given a state ρ of a d-dimensional bipartite quantum system, we let $\operatorname{spec}(\rho)=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{d}\right)$
denote the vector of repeated eigenvalues of ρ enumerated so that $\rho_{1} \geqslant \rho_{2} \geqslant \cdots \geqslant \rho_{d}$. In the two-qubit case, let $\Sigma=\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right): \lambda_{1} \geqslant \lambda_{2} \geqslant \lambda_{3} \geqslant \lambda_{4} \geqslant 0, \lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}=1\right\}$ be all possible state spectra. Theorem 1 asserts that if $\operatorname{spec}(\rho)$ lies in $\mathcal{A}:=\{\lambda \in \Sigma$: $\left.3 \lambda_{1}+\sqrt{2} \lambda_{2}+(3-\sqrt{2}) \lambda_{3} \leqslant 2\right\}$, then ρ is separable. One of the first and most useful results of this nature is that of [2]: if $\operatorname{tr}\left(\rho^{2}\right) \leqslant 1 / 3$, then ρ is separable. In terms of spectra, this is as follows: $\operatorname{spec}(\rho) \in \mathcal{B}:=\left\{\lambda \in \Sigma: \lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2} \leqslant 1 / 3\right\}$ implies ρ is separable. Although $\mathcal{A} \cap \mathcal{B}$ is quite large, $\mathcal{A} \neq \mathcal{B}$, and the conditions defining \mathcal{A} and \mathcal{B} capture different (convex) sets of separable states. To see this, observe that $\lambda \equiv((2+\sqrt{2}) / 8,(2+\sqrt{2}) / 8,(2-\sqrt{2}) / 8,(2-\sqrt{2}) / 8) \in \mathcal{A}$ but $\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}=3 / 8>1 / 3$. Moreover, $(\sqrt{2} / 3)(3 / 4,1 / 4,0,0)+(1-(\sqrt{2} / 3))(1 / 4,1 / 4,1 / 4,1 / 4)$ lies in \mathcal{B} but not in \mathcal{A}. The determination of 'maximally entangled' states of two qubits by Verstraete, Audenaert and De Moor [3] has the following as a consequence ${ }^{1}$: let $\mathcal{C}:=\left\{\lambda \in \Sigma: \lambda_{1}-\lambda_{3}-2 \sqrt{\lambda_{2} \lambda_{4}} \leqslant 0\right\}$; then ρ is separable if $\operatorname{spec}(\rho) \in \mathcal{C}$. The inequality $\sqrt{(t a+(1-t) b)(t c+(1-t) d)} \geqslant$ $t \sqrt{a c}+(1-t) \sqrt{b d}$ valid for $0 \leqslant t \leqslant 1$ and $a, b, c, d \geqslant 0$ shows immediately that \mathcal{C} is convex. By the results of [3], one has $\mathcal{B} \subset \mathcal{C} .^{2}$ One verifies that the four vertices of \mathcal{A} given after the statement of theorem 1 lie in \mathcal{C} so that $\mathcal{A} \subset \mathcal{C}$ because \mathcal{A} is the convex hull of its four vertices.

The proof of the two stated results uses certain tools developed in [1] which we briefly present. Consider the maximally mixed state $\tau=\mathbf{1} / \operatorname{dim}(\mathcal{H})$, then τ factorizes over the two factors of \mathcal{H} so that τ is a separable state. Consider the segment with endpoints ρ and τ : $\rho_{t}=t \cdot \rho+(1-t) \cdot \tau, 0 \leqslant t \leqslant 1$. The modulus of separability $\ell[1]$ measures how far you can go towards ρ beginning at τ until you lose separability: $\ell(\rho)=\sup \left\{t: \rho_{t}\right.$ is separable $\}$. The quantity $(1 / \ell)-1$ was studied by Vidal and Tarrach [4] as the 'random robustness of entanglement'. It can be shown [4, 1] that the supremum is a maximum, ρ_{t} is separable iff $t \leqslant \ell(\rho), \ell(\rho)>0$ and $1 / \ell$ is a convex map on the states: for states ρ, ϕ and $0 \leqslant s \leqslant 1$,

$$
\begin{equation*}
\ell(s \cdot \rho+(1-s) \cdot \phi) \geqslant\left(\frac{s}{\ell(\rho)}+\frac{1-s}{\ell(\phi)}\right)^{-1} \tag{1}
\end{equation*}
$$

The other ingredient is the so-called gap representation of a state introduced in [1]. Let $\operatorname{spec}(\rho)=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right)$ and $\rho=\sum_{j=1}^{d} \lambda_{j} \cdot \rho_{j}$ be a spectral decomposition of ρ where ρ_{j} are pairwise orthogonal pure vector states. Define $\mu_{j}=j\left(\lambda_{j}-\lambda_{j+1}\right), j=1,2, \ldots, d-1$, and $\widehat{\rho}_{j}=j^{-1} \sum_{m=1}^{j} \rho_{m}, j=1,2, \ldots, d$. Note that $\sum_{j=1}^{d-1} \mu_{j}=1-d \lambda_{d}, \widehat{\rho}_{d}=\tau$ and

$$
\operatorname{spec}\left(\widehat{\rho}_{j}\right)=(\underbrace{1 / j, 1 / j, \ldots, 1 / j}_{j}, 0, \ldots, 0) \equiv \mathrm{e}^{(j)}
$$

So $\widehat{\rho}_{1}$ is pure. Then a gap representation of ρ is $\rho=\sum_{j=1}^{d-1} \mu_{j} \cdot \widehat{\rho}_{j}+d \lambda_{d} \cdot \tau$. Noting that $\lambda_{d}=1 / d$ iff $\rho=\tau$, we assume that this is not the case and write

$$
\rho=\left(1-d \lambda_{d}\right) \cdot \omega+d \lambda_{d} \cdot \tau, \quad \omega=\sum_{j=1}^{d-1} \frac{\mu_{j}}{1-d \lambda_{d}} \cdot \widehat{\rho}_{j} .
$$

By the results mentioned, ρ is separable iff

$$
\begin{equation*}
\left(1-d \lambda_{d}\right) \leqslant \ell(\omega) \tag{2}
\end{equation*}
$$

1 We thank H Vogts and K Życzkowski for bringing [3] to our attention.
${ }^{2}$ A direct proof goes as follows. It suffices to show that if $\lambda \in \mathcal{B}$ with $\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}=1 / 3$ then $\lambda \in \mathcal{C}$. Now putting $\lambda_{4}=1-\lambda_{1}-\lambda_{2}-\lambda_{3}$ in the previous identity, we obtain

$$
\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)+\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right)=-1 / 3
$$

Then, $\left(\lambda_{1}-\lambda_{3}\right)^{2}-4 \lambda_{2} \lambda_{4}=\lambda_{1}^{2}+\lambda_{3}^{2}-6 \lambda_{1} \lambda_{3}-4 \lambda_{2}+4 \lambda_{2}^{2}+4\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right)$. Using the displayed identity to eliminate the summand $4\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right)$, we obtain $\left(\lambda_{1}-\lambda_{3}\right)^{2}-4 \lambda_{2} \lambda_{4}=-3\left(\lambda_{1}+\lambda_{3}-2 / 3\right)^{2} \leqslant 0$, and this proves that $\lambda \in \mathcal{C}$.

Applying (1) to the state ω in its gap representation, we have

$$
\ell(\omega) \geqslant\left(\sum_{j=1}^{d-1} \frac{\mu_{j}}{\left(1-d \lambda_{d}\right) \ell\left(\widehat{\rho}_{j}\right)}\right)^{-1}=\left(1-d \lambda_{d}\right)\left(\sum_{j=1}^{d-1} \frac{\mu_{j}}{\ell\left(\widehat{\rho}_{j}\right)}\right)^{-1}
$$

thus (2) is satisfied (and thus ρ is separable) if $\sum_{j=1}^{d-1} \mu_{j} / \ell\left(\widehat{\rho}_{j}\right) \leqslant 1$. We can replace $\ell\left(\widehat{\rho}_{j}\right)$ by lower bounds.

Proposition 1. If $\ell\left(\widehat{\rho}_{j}\right) \geqslant p_{j} \geqslant 0$ for $j=1,2, \ldots, d-1$ and $\sum_{j=1}^{d-1} \mu_{j} / p_{j} \leqslant 1$, then ρ is separable.

The prime reason for introducing the gap representation is that not only the last summand τ but also the second last $\widehat{\rho}_{d-1}$ are separable. This follows from a result of Gurvits and Barnum [5]: if $\operatorname{tr}\left(\phi^{2}\right) \leqslant 1 /(d-1)$ for a bipartite composite system of dimension d, then ϕ is separable. Now indeed $\operatorname{tr}\left(\widehat{\rho}_{d-1}^{2}\right)=1 /(d-1)$.

The least possible modulus of separability has been computed by Vidal and Tarrach [4]: $\inf \{\ell(\phi): \phi$ a state $\}=2 /(2+d)$; the infimum is assumed at a pure state. To prove theorem 2 , put $p_{1}=p_{2}=\cdots=p_{d-2}=2 /(2+d)$ and $p_{d-1}=1$ in the proposition.

Turning to theorem 1, consider the numbers $\widehat{\ell}_{j}:=\inf \left\{\ell(\phi): \operatorname{spec}(\phi)=\mathrm{e}^{(j)}\right\}$, which give the minimal moduli of separability for the states spanning all possible gap representations. Replacing p_{j} by \widehat{l}_{j} in the proposition gives us a general inequality providing a sufficient condition for separability. No general information is available for \widehat{l}_{j} except the calculation of [6] for two qubits where $\widehat{l}_{1}=1 / 3, \widehat{l}_{2}=1 / \sqrt{2}$ and $\widehat{l}_{3}=1$. From this and the proposition, one gets theorem 1 . Since $\widehat{l}_{1}=1 / 3$ and $\widehat{l}_{3}=1$ follow from the results quoted above, we only give the calculation of \widehat{l}_{2} in the appendix.

Appendix. Calculation of ℓ for a two-qubit state with spec $=(1 / 2,1 / 2,0,0)$

Reference [6] gives a direct calculation of $\widehat{\ell}_{1}, \widehat{\ell}_{2}$ and $\widehat{\ell}_{3}$ using the Wootters criterion [7]. Recall that if ρ is a state of a two-qubit system, the Wootters operator W associated with it is $W=\left(\sqrt{\rho}\left(\sigma_{y} \otimes \sigma_{y}\right) \bar{\rho}\left(\sigma_{y} \otimes \sigma_{y}\right) \sqrt{\rho}\right)^{1 / 2}$. Here all operators are taken as matrices with respect to a product orthonormal basis

$$
\sigma_{y}=\left(\begin{array}{ll}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right)
$$

and $\bar{\rho}$ is the complex conjugate of ρ taken with respect to the basis which is real. The Wootters criterion is as follows: ρ is separable if and only if the (repeated) eigenvalues $w_{1} \geqslant w_{2} \geqslant w_{3} \geqslant w_{4}$ of W satisfy $w_{1} \leqslant w_{2}+w_{3}+w_{4}$.

We will calculate the modulus of separability for any state ρ for which $\operatorname{spec}(\rho)=$ $(1 / 2,1 / 2,0,0)$ by calculating the spectrum of the Wootters operator associated with $\rho_{t}=$ $t \rho+(1-t) \tau, 0 \leqslant t \leqslant 1$. The spectrum of ρ_{t} consists of two double eigenvalues $\alpha=(1+t) / 4$ and $\beta=(1-t) / 4$ (which coincide for $t=0$ where $\rho_{0}=\tau$). In order not to overload the notation, we consider a density operator A with $\operatorname{spec}(A)=(\alpha, \alpha, \beta, \beta)$ where $\alpha+\beta=1 / 2$ and $\alpha \geqslant \beta \geqslant 0$; thus $1 / 4 \leqslant \alpha \leqslant 1 / 2$. The spectral decomposition of A reads $A=\alpha P+\beta P^{\perp}$, where P is an orthoprojection of rank 2 and $P^{\perp}=\mathbf{1}-P$ is its orthocomplement, another orthoprojection of rank 2. It follows that $\left(\sigma_{y} \otimes \sigma_{y}\right) \bar{A}\left(\sigma_{y} \otimes \sigma_{y}\right)=\alpha Q+\beta Q^{\perp}$, where $Q=\left(\sigma_{y} \otimes \sigma_{y}\right) \bar{P}\left(\sigma_{y} \otimes \sigma_{y}\right)$ is an orthoprojection of rank 2 and $Q^{\perp}=\mathbf{1}-Q$. Using this one obtains for the square of the Wootters operator associated with A the formula $W^{2}=\beta^{2} \mathbf{1}+\beta(\alpha-\beta)(P+Q)+(\alpha-\beta)(\sqrt{\alpha \beta}-\beta)(P Q+Q P)+\left(\alpha^{2}-\beta^{2}-2 \sqrt{\alpha \beta}(\alpha-\beta)\right) P Q P$.

Now since P, P^{\perp}, Q and Q^{\perp} are orthoprojections of rank 2 in a four-dimensional Hilbert space, we have three mutually exclusive alternatives for the subspaces U and V spanned by P and Q, respectively: (1) $U \cap V=\{0\}$ which happens when and only when $Q=\mathbf{1}-P$ which is equivalent to $\operatorname{tr}(P Q)=0$; (2) $\operatorname{dim}(U \cap V)=2$ which happens when and only when $Q=P$ which is equivalent to $\operatorname{tr}(P Q)=2$; (3) $\operatorname{dim}(U \cap V)=1$ which happens when and only when there are unit vectors ψ, ϕ and χ in the four-dimensional Hilbert space which satisfy $\langle\psi, \phi\rangle=\langle\psi, \chi\rangle=0$ and $|\langle\chi, \phi\rangle|<1$ such that $P=|\psi\rangle\langle\psi|+|\phi\rangle\langle\phi|$ and $Q=|\psi\rangle\langle\psi|+|\chi\rangle\langle\chi|$. One has $\operatorname{tr}(P Q)=1+|\langle\chi, \phi\rangle|^{2}$. This alternative is equivalent to $\operatorname{tr}(P Q) \in[1,2)$.

The three alternatives are distinguished by the value of $\operatorname{tr}(P Q)$. For convenience, we introduce the following characteristic geometric parameter $\xi=\operatorname{tr}(P Q)-1$, which will determine the modulus of separability completely. We now distinguish the three possibilities:
(1) which occurs iff $\xi=-1$. Here $P Q=0$ allows one to compute $W^{2}=\alpha \beta 1$. The Wootters criterion is satisfied and the associated state is separable;
(2) which occurs iff $\xi=1$. Here $P=Q$ allows one to calculate directly $W=A$, and the Wootters criterion is just $\alpha \leqslant 1 / 2$, so the associated state is separable;
(3) which occurs iff $0 \leqslant \xi<1$. We may assume that

$$
\psi=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad \phi=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad \chi=\left(\begin{array}{c}
0 \\
\sqrt{\xi} \\
\eta_{1} \\
\eta_{2}
\end{array}\right), \quad \eta=\binom{\eta_{1}}{\eta_{2}}
$$

where $\eta \neq 0$ because $\|\eta\|^{2}=\|\chi\|^{2}-\xi=1-\xi>0$. We now partition $\mathbb{C}^{4}=\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}^{2}$, and doing the necessary matrix multiplications we get, from our previous formula for W^{2},

$$
W^{2}=\left(\begin{array}{ccc}
\alpha^{2} & 0 & \langle 0| \\
0 & \alpha \beta+\alpha(\alpha-\beta) \xi & (\alpha-\beta) \sqrt{\xi \alpha \beta}\langle\eta| \\
|0\rangle & (\alpha-\beta) \sqrt{\xi \alpha \beta}|\eta\rangle & \beta^{2} \mathbf{1}_{2}+\beta(\alpha-\beta)|\eta\rangle\langle\eta|
\end{array}\right) .
$$

It is now clear that α^{2} is an eigenvalue of W^{2}. The eigenvalue condition for an eigenvalue ζ to the eigenvector $x \oplus \mu$ for the lower right 3×3 block on $\mathbb{C} \oplus \mathbb{C}^{2}$ is

$$
\begin{align*}
& (\zeta-\alpha \beta-\alpha(\alpha-\beta) \xi) x=(\alpha-\beta) \sqrt{\xi \alpha \beta}\langle\eta, \mu\rangle \tag{A.1}\\
& \left(\zeta-\beta^{2}\right) \mu=(\alpha-\beta)(\sqrt{\xi \alpha \beta} x+\beta\langle\eta, \mu\rangle) \eta \tag{A.2}
\end{align*}
$$

Putting $x=0$ and taking as we may $\mu \neq 0$ orthogonal to η, (A.1) is satisfied and (A.2) reduces to $\left(\zeta-\beta^{2}\right) \mu=0$; thus β^{2} is an eigenvalue of W^{2}. We are now left with the problem of finding eigenvectors orthogonal to those already found. They are of the form $x \oplus c \eta$ with $x, c \in \mathbb{C}$. Inserting such eigenvectors into (A.1) and (A.2), the discussion of the solutions is tedious but straightforward. One obtains the two missing eigenvalues of W^{2} to be $\zeta_{ \pm}(\alpha, \xi)=\frac{\alpha}{2}(1-2 \alpha)+\frac{\xi}{8}(4 \alpha-1)^{2} \pm \frac{4 \alpha-1}{4} \sqrt{2 \xi \alpha(1-2 \alpha)+\xi^{2}(2 \alpha-1 / 2)^{2}}$. Having the four eigenvalues of A, we must decide which is the largest. We have $\alpha \geqslant \beta$ by assumption, and clearly $\zeta_{+}(\alpha, \xi) \geqslant \zeta_{-}(\alpha, \xi)$. Moreover, $\xi \mapsto \zeta_{+}(\alpha, \xi)$ is increasing and $\zeta_{+}(\alpha, 1)=\alpha^{2}$. Thus, α is the largest eigenvalue of W and the Wootters criterion reads $\alpha \leqslant \beta+\sqrt{\zeta_{+}(\alpha, \xi)}+\sqrt{\zeta_{-}(\alpha, \xi)}$. Manipulation of this inequality shows that it is equivalent to $\alpha \leqslant(1+(1 / \sqrt{2-\xi})) / 4$.

Recalling that $\alpha=(1+t) / 4$, we arrive at the following: if the two-qubit state ρ has $\operatorname{spec}(\rho)=(1 / 2,1 / 2,0,0)$, then

$$
\ell(\rho)= \begin{cases}1, & \begin{array}{l}
\text { if } Q=\mathbf{1}-P, \\
\text { otherwise }
\end{array}\end{cases}
$$

where P is the spectral orthoprojection to the eigenvalue $1 / 2$ and $Q=\left(\sigma_{y} \otimes \sigma_{y}\right) \bar{P}\left(\sigma_{y} \otimes \sigma_{y}\right)$.
Since $\operatorname{tr}(P Q) \in[1,2]$ when $Q \neq \mathbf{1}-P$, we obtain $\widehat{\ell}_{2}=\inf \{\ell(\rho): \operatorname{spec}(\rho)=(1 / 2$, $1 / 2,0,0)\}=1 / \sqrt{2}$.

References

[1] Raggio G A 2006 Spectral conditions on the state of a composite quantum system implying its separability J. Phys. A: Math. Gen. 39617
[2] Życzkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Volume of the set of separable states Phys. Rev. A 58883
[3] Verstraete F, Audenaert K and De Moor B 2001 Maximally entangled mixed states of two qubits Phys. Rev. A 64012316
[4] Vidal G and Tarrach R 1999 Robustness of entanglement Phys. Rev. A 59141
[5] Gurvits L and Barnum H 2003 Separable balls around the maximally mixed multipartite quantum state Phys. Rev. A 68042312
[6] Gabach Clément M E 2005 Entrelazamiento en sistemas cuánticos compuestos Trabajo Especial de Licenciatura en Física (FaMAF), unpublished
[7] Wootters W K 1998 Entanglement of formation of an arbitrary state of two qubits Phys. Rev. Lett. 802245

