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Abstract
We give a simple spectral condition in terms of the ordered eigenvalues of the
state of a bipartite quantum system which is sufficient for separability.

PACS numbers: 03.65.Ud, 03.67.—a

We consider quantum systems where the underlying Hilbert space H is the tensor product of
two finite-dimensional Hilbert spaces. A state of such a system is identified with a density
operator and is said to be separable if it can be written as a convex sum of pure product states
of the system, that is to say, vector states where the vectors are product vectors. The separable
states form a convex subset of the states of the system.

For the simplest bipartite composite system, we have the following result.

Theorem 1. [f the eigenvalues hy > dy = A3 = Ay of the two-qubit state p satisfy 31 +
ﬁkz + 3 - «/5))»3 < 2, then p is separable.

The states satisfying the inequality have spectra in the simplex spanned by
the spectra (always written taking into account multiplicities and nonincreasingly)
(1/2,1/6,1/6,1/6), (2 +~/2)/8, (2++/2)/8, (2 — +/2)/8, (2 — /2)/8), (1/3,1/3,1/3,0)
and (1/4,1/4,1/4,1/4).

The method used to prove the above result also gives a different proof of the following
result given in ([1], theorem 3).

Theorem 2. [f the eigenvalues Ay > Ly = --- = Ag of the state p of a bipartite quantum
system of dimension d satisfy 31y + (d — 1) Ayg_1 = 1, then p is separable.

Both results provide simple spectral criteria ensuring separability. In the case of two
qubits (d = 4), theorem 2 is much weaker than theorem 1.

Before proceeding to the proofs, we compare theorem 1 with other available results of
the same nature, that is, conditions on the spectrum implying separability of the state. Given
a state p of a d-dimensional bipartite quantum system, we let spec(p) = (o1, P2, .- -, Pd)
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denote the vector of repeated eigenvalues of p enumerated so that p; > p, > - -+ > py. Inthe
two-qubit case,let X = {(A, A0, A3, ) t A1 2 A 2 A3 2 A 2 0, A1+ A+ A3+ Ag = 1}
be all possible state spectra. Theorem 1 asserts that if spec(p) lies in 4 (= {A € X :
30 + ﬁkz + (3 - \/E))\.:; < 2}, then p is separable. One of the first and most useful
results of this nature is that of [2]: if tr(p?) < 1 /3, then p is separable. In terms of
spectra, this is as follows: spec(p) € B = {A € X A% + A% + A% + )& < 1/3} implies
p is separable. Although A N B is quite large, A # B, and the conditions defining
A and B capture different (convex) sets of separable states. To see this, observe that
A= ((2++2)/8, 2++/2)/8, 2—~/2)/8, (2—~/2)/8) € Abut A2 +A3+A3+A3 = 3/8 > 1/3.
Moreover, («/E/S)(S/4, 1/4,0,0) + (1 — (\/5/3))(1/4, 1/4,1/4,1/4) lies in B but not in A.
The determination of ‘maximally entangled’ states of two qubits by Verstraete, Audenaert and
De Moor [3] has the following as a consequencel: letC:={A € X : A —Az—2MAq < 0};
then p is separable if spec(p) € C. The inequality +/(ta + (1 —)b)(tc+ (1 —1)d) >
t/ac + (1 — 1)/bd valid for 0 < t < 1 and a, b, c,d > 0 shows immediately that C is
convex. By the results of [3], one has B C C.? One verifies that the four vertices of A given
after the statement of theorem 1 lie in C so that A C C because A is the convex hull of its four
vertices.

The proof of the two stated results uses certain tools developed in [1] which we briefly
present. Consider the maximally mixed state T = 1/ dim(), then t factorizes over the two
factors of H so that T is a separable state. Consider the segment with endpoints p and t:
pr=t-p+(1—1) 1,0 <t < 1. The modulus of separability £ [1] measures how far you
can go towards p beginning at T until you lose separability: £(p) = sup{t : p; is separable}.
The quantity (1/€) — 1 was studied by Vidal and Tarrach [4] as the ‘random robustness of
entanglement’. It can be shown [4, 1] that the supremum is a maximum, p, is separable iff
t < €(p),€(p) > 0and 1/¢ is a convex map on the states: for states p, ¢ and 0 < s < 1,

s - +(1—s).¢)><i+1_s)1 (1)
P "\ Ty )

The other ingredient is the so-called gap representation of a state introduced in [1]. Let

spec(p) = (A1, A2, ..., Ag) and p = Z?:] Aj - p; be a spectral decomposition of p where p;

are pairwise orthogonal pure vector states. Define p; = j(A; — A1), j =1,2,...,d -1,
and p; = j 'Y} pw.j =1.2.....d. Note that Y9} p1; = 1 —dhy. py = 7 and
spec(0;) = (1/j, 1/j, ..., 1/j,0,...,0) =e".
—_—

J
So p; is pure. Then a gap representation of p is p = 27;11 Wwj-pj+dirq-t. Noting that
Aq = 1/d iff p = 1, we assume that this is not the case and write

d—1
M —~
p = d) T ® j=11_dkd [
By the results mentioned, p is separable iff
(I —dxrg) < Uw). 2

' We thank H Vogts and K Zyczkowski for bringing [3] to our attention.
2 A direct proof goes as follows. It suffices to show that if A € B with )\% + A% + A% + }Li = 1/3 then A € C. Now
putting A4 = 1 — A1 — A2 — A3 in the previous identity, we obtain

A+ 403 — (g + A2 +A3) + (hida + A1k + A2h3) = —1/3.
Then, (A — 23)? — 4dzhs = A2+ 23 — 6A1A3 — 4A2 + 423 + 4(A1 A2 + A1A3 + A2A3). Using the displayed identity to
eliminate the summand 4(A1 A2 + A1 A3 + A2A3), we obtain (A — A3)2 — 4A2h4 = —3(A1 + A3 — 2/3)% < 0, and this
proves that A € C.
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Applying (1) to the state w in its gap representation, we have

-1 -1
d—1 d—1

Hj 1 Hj
>\ Lampey | =\ L]

j=1 j=1

thus (2) is satisfied (and thus p is separable) if Z?;i

lower bounds.

wi/€(®;) < 1. We can replace £(p;) by

Proposition 1. If £(7,) > p; > 0for j = 1.2,....d — Land Y__| u;/p; < 1, then p is
separable.

The prime reason for introducing the gap representation is that not only the last summand
7 but also the second last p,_1 are separable. This follows from a result of Gurvits and Barnum
[5]: if tr(¢?) < 1 /(d — 1) for a bipartite composite system of dimension d, then ¢ is separable.
Now indeed tr(p3_,) = 1/(d — 1).

The least possible modulus of separability has been computed by Vidal and Tarrach [4]:
inf{€(¢) : ¢ astate} = 2/(2+d); the infimum is assumed at a pure state. To prove theorem 2,
putpy=py=---= pg—» =2/(2+d) and p;_; = 1 in the proposition.

Turning to theorem 1, consider the numbers £; := inf{£(¢) : spec(¢) = e/}, which give
the minimal moduli of separability for the states spanning all possible gap representations.
Replacing p; by ’l\j in the proposition gives us a general inequality providing a sufficient
condition for separability. No general information is available for/l\j except the calculation of
[6] for two qubits whereTl =1/ 3,/1\2 =1/ V2 andT3 = 1. From this and the proposition, one
gets theorem 1. Since I, = 1 /3 and /3 = 1 follow from the results quoted above, we only give
the calculation of 5 in the appendix.

Appendix. Calculation of £ for a two-qubit state with spec = (1/2,1/2,0,0)

Reference [6] gives a direct calculation of Zl,?z and 'E3 using the Wootters criterion [7].
Recall that if p is a state of a two-qubit system, the Wootters operator W associated with it is
W = (/p(oy ® 0,)p(0y ® 6)/p)'"/?. Here all operators are taken as matrices with respect
to a product orthonormal basis

(0 i
=\ o

and p is the complex conjugate of p taken with respect to the basis which is real. The
Wootters criterion is as follows: p is separable if and only if the (repeated) eigenvalues
w1 = wy = w3 = wy of W satisfy wy < wy + w3 + wy.

We will calculate the modulus of separability for any state p for which spec(p) =
(1/2,1/2,0,0) by calculating the spectrum of the Wootters operator associated with p, =
tp+(1—1)t,0 < ¢ < 1. The spectrum of p, consists of two double eigenvalues o = (1+¢)/4
and 8 = (1 — t)/4 (which coincide for t = 0 where pp = 7). In order not to overload the
notation, we consider a density operator A with spec(A) = (o, «, 8, B) where o + 8 = 1/2
anda > B > 0;thus 1/4 < o < 1/2. The spectral decomposition of A reads A = « P+ B P+,
where P is an orthoprojection of rank 2 and P+ = 1 — P is its orthocomplement, another
orthoprojection of rank 2. It follows that (o, ® O’}.)X(Uy ®o0,) = aQ + BO*, where
0= (0, ® oy)F(ay ® o) is an orthoprojection of rank 2 and Q0+ =1- Q. Using
this one obtains for the square of the Wootters operator associated with A the formula

W? = B1+B(@—B)(P+Q)+(a—B)(Vap—B)(P Q+Q P)+(o’ — 7 —2/af(a—B)) PO P.
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Now since P, PY,Q and Q' are orthoprojections of rank 2 in a four-dimensional
Hilbert space, we have three mutually exclusive alternatives for the subspaces U and V
spanned by P and Q, respectively: (1) U NV = {0} which happens when and
only when Q = 1— P which s equivalent to tr(P Q) = 0; (2) dim(U NV) = 2 which happens
when and only when Q = P which is equivalent to tr(P Q) = 2; (3) dim(U N V) = 1 which
happens when and only when there are unit vectors v, ¢ and x in the four-dimensional Hilbert
space which satisfy (¥, ¢) = (¥, x) = 0 and |(x, ¢)| < 1 such that P = |[¢) (| + |9) (]
and Q = |¥)(¥|+|x)(x|. One has tr(P Q) = 1+ |(x, ¢)|>. This alternative is equivalent to
tr(PQ) €[1,2).

The three alternatives are distinguished by the value of tr(P Q). For convenience, we
introduce the following characteristic geometric parameter § = tr(P Q) — 1, which will
determine the modulus of separability completely. We now distinguish the three possibilities:

(1) which occurs iff € = —1. Here P Q = 0 allows one to compute W? = «1. The Wootters
criterion is satisfied and the associated state is separable;

(2) which occurs iff £ = 1. Here P = Q allows one to calculate directly W = A, and the
Wootters criterion is just & < 1/2, so the associated state is separable;

(3) which occurs iff 0 < & < 1. We may assume that

1 0 0
_|o |t | VE _(m)
Y= ol ¢ = ol =11 n=1\,,)
0 0 b

where 7 # 0 because [|7]|2 = [ x|>—& = 1 —& > 0. We now partition C* = C®CaC?,
and doing the necessary matrix multiplications we get, from our previous formula for W2,

o 0 ]
W2=|0 oaB+alx—p)%E (@ — B)VEaB (]
0) (¢ — B)vEaBln) B*1r+Bla — B)In)(nl

It is now clear that o is an eigenvalue of W2. The eigenvalue condition for an eigenvalue ¢
to the eigenvector x @ p for the lower right 3 x 3 block on C & C? is

(€ —ap —ala = B)E)x = (a — f)yEap(n, u), (A.D
(& = B = (a — B (VEapx + Bln, w)n. (A.2)

Putting x = 0 and taking as we may u # O orthogonal to 1, (A.1) is satisfied and (A.2)
reduces to (¢ — B?)u = 0; thus B2 is an eigenvalue of W2. We are now left with the
problem of finding eigenvectors orthogonal to those already found. They are of the form
x @ cn with x, ¢ € C. Inserting such eigenvectors into (A.1) and (A.2), the discussion of the
solutions is tedious but straightforward. One obtains the two missing eigenvalues of W2 to be
(a(, &) = 5(1 = 20) + %(40[ - 1)+ “DCT_I\/%}(X(I —2a) + £2(2a — 1/2)%. Having the four
eigenvalues of A, we must decide which is the largest. We have o« > f by assumption, and
clearly ¢, (o, £) > ¢_(a, £). Moreover, £ — .(a, £) is increasing and ¢, («, 1) = «®. Thus,
is the largest eigenvalue of W and the Wootters criterion reads o < B++/C.(a, ) +4/C_(a, &).
Manipulation of this inequality shows that it is equivalent to o < (1 + (1/4/2 — £))/4.

Recalling that « = (1 + ¢)/4, we arrive at the following: if the two-qubit state p has
spec(p) = (1/2,1/2,0,0), then

o) 1, ifQ=1-P,
pr) = 1 :
W’ otherw1se,
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where P is the spectral orthoprojection to the eigenvalue 1/2 and Q = (0y ® ay)F(ay ® o0y).
Since tr(PQ) € [1,2] when QO # 1 — P, we obtain £, = inf{€(p) : spec(p) = (1/2,
1/2,0,0)} = 1/v/2.
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